Stereoselective Total Synthesis of (3R,8S)-Falcarindiol, a Common Polyacetylenic Compound from Umbellifers

Guangrong Zheng, Wei Lu, and J unchao Cai*
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China

Recei ved September 25, 1998

Abstract

The first stereoselective total synthesis of (3R,8S)-falcarindiol (1) from L-tartaric acid and D-xylose is reported, via the Cadiot-Chodkiczwicz reaction, to couple 1-bromoalkyne (2) with 3(R)-(tert-butyldiphe-nylsilyloxy)-1-penten-4-yne (3).

Several polyacetylenes have been isolated from U mbelliferae and the cl osely related Araliaceae. ${ }^{1}$ Their biol ogical properties make them of interest to plant pathologists and pharmacologists. Falcarindiol (1) is a toxic polyacetylenic compound commonly occurring in umbellifers and in many Araliaceae plant species. ${ }^{2}$ Antimicrobial tests showed growth inhibitory effects against Escherichia coli DC2 (MIC $=2.5 \mu \mathrm{~g} \mathrm{~mL}^{-1}$), methicillin-sensitive Staphyl ococcus aureus K147 (MIC $=12.5 \mu \mathrm{~g} \mathrm{~mL}^{-1}$), methicillin-resistant S. aureus SAP0017 (MIC $=25.0 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$), and Bacillus subtilis Vernon (MIC $=12.5 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$). ${ }^{3}$ It was further proved that falcarindiol (1) had antiproliferative activity; ${ }^{4}$ the ED_{50} against MK-1 cell growth was $3.2 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$.

The first report of falcarindiol (1) was in 1966,5 and it was determined to be heptadeca-1,9(Z)-diene-4,6-diyne-3,8diol in 1969. ${ }^{6}$ The absolute configuration was determined to be $3 \mathrm{R}, 8 \mathrm{~S} .{ }^{7}$ To our knowledge, no total synthesis of this compound has been reported. We carried out the stereoselective total synthesis of $\mathbf{1}$ to verify the structure and absolute configuration and to do more research on its pharmacological activities. Herein, we report details of this work.

Retrosynthetic analysis for falcarindiol (1) revealed that it could be obtained from 2 and $\mathbf{3}$, which are prepared from cheap chiral templates L-tartaric acid and D-xylose, respectively. In our approach to the total synthesis of $\mathbf{1}$, we took advantage of the Cadiot-Chodkiczwicz reaction ${ }^{8}$ to couple of 2 with 3.

1-Bromoalkyne 2 was synthesized as outlined in Scheme 1. The readily available 2,3-isopropylidenedioxy-L-threitol (4), prepared from L-tartaric acid according to known procedure, ${ }^{9}$ was converted into monosubstituted p-methoxybenzyl (MPM) ether 5. Swern oxidation of 5 and subsequent Wittig reaction with $\mathrm{n}-\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{CH}=\mathrm{PPh}_{3}$ afforded Z-isomer 6 (no E-isomer was found from TLC and ${ }^{1} \mathrm{H}$ NMR). Deprotection of 6 with DDQ ${ }^{10}$ in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}$ system provided alcohol 7, which was smoothly transformed to chloride 8 using PPh_{3} and $\mathrm{CCl}_{4} .{ }^{11}$ Treatment of 8 with LDA in THF ${ }^{12}$ gave terminal alkyne 9, which was reacted with NBS and $\mathrm{AgNO}_{3}{ }^{13}$ to afford the 1-bromoalkyne compound 2.

[^0]Scheme $1^{\text {a }}$

a Key: (a) MPMCI, NaH, THF-DMF; (b) (i) $(\mathrm{COCl})_{2}, \mathrm{DMSO}^{2}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, (ii) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{PPh}_{3}{ }^{+} \mathrm{Br}^{-}$, $\mathrm{KO}-\mathrm{t}-\mathrm{Bu}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$; (c) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}$ (20:1); (d) $\mathrm{PPh}_{3}, \mathrm{CCl}_{4}$, reflux; (e) LDA, THF, $-78^{\circ} \mathrm{C}$; (f) NBS, AgNO_{3}, acetone.

Scheme 2

Scheme 3^{a}

10
${ }^{\text {a }}$ Key: (a) $\mathrm{CuCl}, \mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, aqueous EtNH_{2}, MeOH ; (b) TBAF, THF.
3(R)-(tert-Butyldiphenylsilyloxy)-1-penten-4-yne $\mathbf{3}$ was obtained according to Scheme $2 .{ }^{14}$ Using the CadiotChodkiczwicz reaction, fragment 2 was coupled with 3. After deprotection of the tert-butyldiphenylsilyl (TBDPS) group, falcarindiol (1) was obtained (Scheme 3). The $[\alpha]_{D}$ value and other spectral data of synthetic 1 were in agreement with the reported data. ${ }^{3}$ Thus, we report a stereospecific synthesis of falcarindiol (1) from L-tartaric acid and D-xylose. The overall yield was 10.5% starting from 4.

Experimental Section

General Experimental Procedures. Infrared spectra (IR) were recorded on a Nicol et Magna IR 750 spectrometer. NMR
were run on a Bruker AMX-400 MHz or a Gemini-300 MHz instrument with TMS as internal standard and CDCl_{3} as solvent. Optical rotation values were measured on a PerkinElmer 241 polarimeter at $25^{\circ} \mathrm{C}$. EIMS spectra were obtained on a Varian MAT-711 or HP-5989A spectrometer. HREIMS were recorded on a Finnigan MAT spectrometer. Column chromatography was performed on silica gel, 200-300 mesh, from Qing Dao, China.
(2S,3S,4Z)-1-p-Methoxybenzyloxy-2,3-isopropylidene-dioxydodeca-4-ene (6). Dimethyl sulfoxide ($4.70 \mathrm{~mL}, 65.88$ mmol), dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), was added to a solution of oxalyl chloride ($2.90 \mathrm{~mL}, 32.94 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 15 min , a solution of $5(6.20 \mathrm{~g}, 21.96 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added and the mixture stirred for 30 min . Triethylamine ($15 \mathrm{~mL}, 110 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added, and the resulting mixture was stirred for another 10 min and then allowed to warm to room temperature. The resulting mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with $1 \% \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, and saturated NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give the corresponding aldehyde, which was directly used for the next reaction

To a solution of octyltriphenyl phosphonium bromide (12.00 $\mathrm{g}, 26.35 \mathrm{mmol}$) in THF (150 mL) was added potassium tertbutoxide ($26 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 26 mmol) at room temperature After being stirred for 1 h , the mixture was cooled to $-78^{\circ} \mathrm{C}$. To this mixture was added a solution of the above aldehyde in THF (20 mL), and the whole mixture was stirred for another 2 h . Stirring was continued overnight at room temperature. The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. The extract was washed with saturated NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Column chromatography of the residue (petroleum ether/ethyl acetate, 20:1) gave the desired Z-isomer $6(5.14 \mathrm{~g}, 64.6 \%$ from 5) as a colorless oil: $[\alpha]_{\mathrm{D}}=-8.7^{\circ}\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right)$; IR (film) $v_{\max } 3320,2990$, 2960, 2930, 2860, 1710, 1612, 1460, 1350, 1514, 1250, 1063 $822 \mathrm{~m}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.23(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5$ $\mathrm{Hz}, \mathrm{Ph}), 6.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ph}), 5.63(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=10.8$ $7.6 \mathrm{~Hz}, \mathrm{H}-5), 5.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.8,9.1 \mathrm{~Hz}, \mathrm{H}-4), 4.59(\mathrm{~m}, 1 \mathrm{H}$ $\mathrm{H}-3$), 4.51 (s, $2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 3.82 (m, 1H, H-2), 3.79 (s, 3H $\left.\mathrm{CH}_{3} \mathrm{O}\right), 3.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 2.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 1.41(\mathrm{~s}, 2 \times 3 \mathrm{H}$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 1.22(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-8 \rightarrow \mathrm{H}-11), 0.87$ (t, 3H, J = $6.7 \mathrm{~Hz}, \mathrm{H}-12$); EIMS m/z $376\left[\mathrm{M}^{+}\right], 361,318,272$, 210, 121 (100), 97, 77, 59; anal. C 73.09\%, H 9.65\%, calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4}, \mathrm{C} 73.37 \%, \mathrm{H} 9.64 \%$.
(2S,3S,4Z)-2,3-I sopropylidenedioxydodeca-4-en-1-ol (7). To a stirred solution of $6(1.90 \mathrm{~g}, 5.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25$ $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}\left(1.25 \mathrm{~mL}, 1 / 20\right.$ of $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was added DDQ (1.78 $\mathrm{g}, 7.86 \mathrm{mmol})$. After the solution was stirred for 2 h , saturated aqueous NaHCO_{3} was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with saturated aqueous NaHCO_{3} and NaCl , dried (MgSO_{4}), and concentrated. Column chromatography of the residue (petroleum ether/ethyl acetate, $50: 1 \rightarrow 20: 1$) gave $7(1.09 \mathrm{~g}, 81.3 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}=$ -8.6° (c $0.95, \mathrm{CHCl}_{3}$); IR (film) $v_{\max } 3450,2990,2930,2860$, 1650, 1512, 1379, 1236, 1057, $856 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 5.69$ (dt, $1 \mathrm{H}, \mathrm{J}=10.8,7.6 \mathrm{~Hz}, \mathrm{H}-5), 5.37$ (dd, 1H, J = $10.8,9.1 \mathrm{~Hz}, \mathrm{H}-4), 4.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 3.71$ (X of ABX, 1H, H-2), 3.54 and $3.81\left(A B\right.$ of $A B X, 2 H, J_{A B}=3.3 \mathrm{~Hz}, \mathrm{~J}_{A X}=\mathrm{J}_{\mathrm{BX}}=12.0$ $\mathrm{Hz}, \mathrm{H}-1), 2.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 1.42\left(\mathrm{~s}, 2 \times 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1,34$ (m, 2H, H-7), 1.26 (m, 8H, H-8 $\rightarrow \mathrm{H}-11$), 0.88 (t, 3H, J $=6.7$ Hz, H-12); EIMS m/z 256 [M+ ${ }^{+}$, 241, 196, 181, 155, 124 (100), 109, 97, 81, 59, 55; anal. C 70.53\%, H 11.05\%, calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3}, \mathrm{C} 70.27 \%, \mathrm{H}$ 11.01\%.
(2R,3S,4Z)-1-Chloro-2,3-isopropylidenedioxydodeca-4ene (8). To a sol ution of $7(2.31 \mathrm{~g}, 9.01 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(40 \mathrm{~mL})$ was added triphenylphosphine ($4.73 \mathrm{~g}, 18.02 \mathrm{mmol}$) and the mixture refluxed for 12 h . The reaction mixture was cool ed to room temperature, poured into petrol eum ether (200 mL), and left at $0{ }^{\circ} \mathrm{C}$ overnight. The mixture was filtered and concentrated, and column chromatography of the residue (petroleum ether/ethyl acetate 100:1) gave 8 ($2.25 \mathrm{~g}, 91.1 \%$) as a col orless oil: $[\alpha]_{D}=-9.6^{\circ}$ (c 1.15, CHCl_{3}); IR (film) $\nu_{\max } 2990,2960$ 2930, 2860, 1760, 1680, 1458, 1373, 1223, 1061, 899, $748 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.72(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=10.8,7.6 \mathrm{~Hz}$ $\mathrm{H}-5)$, 5.37 (dd, $1 \mathrm{H}, \mathrm{J}=10.8,9.1 \mathrm{~Hz}, \mathrm{H}-4), 4.69$ (m, 1H, H-3), $3.88(X$ of $A B X, 1 H, H-2), 3.61\left(A B\right.$ of $A B X, 2 H, J_{A B}=4.3 \mathrm{~Hz}$, $\left.\mathrm{J}_{A x}=\mathrm{J}_{\mathrm{BX}}=11.9 \mathrm{~Hz}, \mathrm{H}-1\right), 2.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 1.45$ and $1.46(\mathrm{~s}$, $\left.2 \times 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 1.28(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-8 \rightarrow \mathrm{H}-11)$, 0.87 (t, 3H, J = 6.7 Hz, H-12); EIMS m/z 274 [M ${ }^{+}$], 259, 239, 196, 181, 97, 85(100); anal. C 65.52\%, H 9.93\%, calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{ClO}_{2}, \mathrm{C} 65.55 \%$, H 9.90\%.
(3S,4Z)-Dodec-4-en-1-yn-3-ol (9). n-Butyllithium (22 mL , 2.15 M in hexane, 46.92 mmol) was added to a solution of diisopropylamine ($6.60 \mathrm{~mL}, 46.92 \mathrm{mmol}$) in THF (80 mL) at 0 ${ }^{\circ} \mathrm{C}$. After being stirred for 30 min , the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. To this mixture was added a solution of $8(2.15 \mathrm{~g}$, 7.82 mmol) in THF (20 mL). Stirring was continued for 4 h , and the reaction was then warmed to room temperature and stirred overnight. The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. The extract was washed with saturated NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Column chromatography of the residue (petroleum ether/ethyl acetate, 20:1) gave 9 as a colorless oil (820 mg), and 200 mg of 8 was recovered (64.1%): $[\alpha]_{D}=122.9^{\circ}$ (c 1.0, CHCl_{3}); IR (film) $v_{\max } 3311,2960,2930,2860,2117,1660,1466,1018,654 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right) \delta 5.56$ (m, 2H, H-4, H-5), 5.13 (dd, $1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, \mathrm{H}-3), 2.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{H}-1)$, 2.11 (m, 2H, H-6), 1.36 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$), 1.27 ($\mathrm{m}, 8 \mathrm{H}, \mathrm{H}-8 \rightarrow \mathrm{H}-11$) 0.86 (t, 3H, $6.7 \mathrm{~Hz}, \mathrm{H}-12$); EIMS m/z 179 [${ }^{+}-1$], 162, 151, 137, 109, 95, 81 (100), 68, 55; HREIMS m/z 179.1448 (calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}, 179.1437$).
(3S,4Z)-1-Bromododec-4-en-1-yn-3-ol (2). N-Bromosuccini mide ($760 \mathrm{mg}, 4.24 \mathrm{mmol}$) and $\mathrm{AgNO}_{3}(100 \mathrm{mg}, 0.57 \mathrm{mmol})$ were added to a solution of $9(510 \mathrm{mg}, 2.83 \mathrm{mmol})$ in acetone $(20 \mathrm{~mL})$ at room temperature. After being stirred for 3 h , the mixture was poured into saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with ether. The extract was washed with saturated NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Column chromatography of the residue (petroleum ether/ethyl acetate, 50:1) gave 2 ($580 \mathrm{mg}, 79.1 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}=77.4^{\circ}$ (c 0.90, CHCl_{3}); IR (film) $v_{\max } 3427,2960,2930,2860,2187,1726,1645$, 1626, 1466, 1248, 980, 740, $660 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 5.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5), 5.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-3)$, 2.10 (m, 2H, H-6), 1.36 (m, 2H, H-7), 1.27 ($\mathrm{m}, 8 \mathrm{H}, \mathrm{H}-8 \rightarrow \mathrm{H}-11$) 0.89 (t, 3H, J $=6.7 \mathrm{~Hz}, \mathrm{H}-12$); EIMS m/z 257/259 [M ${ }^{+}-1$], 242, 161 (100), 146, 133, 109, 95, 81, 67, 55; HREIMS m/z 257.0545 (calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BrO}, 257.0542$).
(3R,8S)-3-(tert-Butyldiphenylsilyoxy)falcarindiol (10). To a solution of $\mathrm{CuCl}(4 \mathrm{mg}, 0.038 \mathrm{mmol}), \mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(16$ $\mathrm{mg}, 0.225 \mathrm{mmol}), 65 \% \mathrm{EtNH}_{2}(0.8 \mathrm{~mL})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ were added successively $\mathbf{3}(240 \mathrm{mg}, 0.75 \mathrm{mmol})$ and 2 (176 $\mathrm{mg}, 0.68 \mathrm{mmol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$. After being stirred for 30 min, the mixture was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether. The extract was washed with saturated NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Column chromatography of the residue (petroleum ether/ethyl acetate, 20:1) gave $\mathbf{1 0}$ (218 mg , 64.3%) as a slightly yellow oil: $[\alpha]_{\mathrm{D}}=108.8^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$); IR (film) $v_{\max } 3311,2960,2930,2860,2150,1970,1860,1464$, 1427, 1112, 821, $702 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 7.69$ (m, 4H, SiPh), 7.39 (m, 6H, SiPh), 5.83 (ddd, 1H, J = 17.0, $10.1,5.4 \mathrm{~Hz}, \mathrm{H}-2), 5.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-10), 5.27$ (dt, 1H, J = 17.0, 1.3 Hz, H-1a), 5.18 (d, J $=8.1 \mathrm{~Hz}, \mathrm{H}-8$), 5.12 (dt, 1 H , J $=10.1,1.3 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 4.83(\mathrm{br} \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{H}-3), 2.10(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-11), 1.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12), 1.30(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-13 \rightarrow \mathrm{H}-16)$, $1.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-17)$; EIMS m/z $441\left[\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 384,286,231$ (100), 199, 83, 55, 43; HREIMS m/z 498.2926 (calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{SiO}_{2}$, 498.2956).

Falcarindiol (1). TBAF ($0.6 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.60 mmol) was added to a solution of $\mathbf{1 0}(60 \mathrm{mg}, 0.12 \mathrm{mmol})$ in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 3 h , the mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate. The extract was washed with saturated NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Column chromatography of the residue (petrol eum ether/ethyl acetate, 5:1) gave $\mathbf{1}$ (26 mg , 83.9%) as a slightly yellow oil: $[\alpha]_{\mathrm{D}}=211.7^{\circ}\left(\mathrm{c} 0.65, \mathrm{CHCl}_{3}\right)$ [lit. ${ }^{14}[\alpha]_{\mathrm{D}}=219.4^{\circ}$ (c 4.6, CHCl_{3})]; IR (film) $v_{\max } 3338,2960$, 2930, 2860, 2231, 2150, 1709, 1464, 1263, 1119, 1018, 933 cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.93$ (ddd, $1 \mathrm{H}, \mathrm{J}=17.0$,
10.1, $5.4 \mathrm{~Hz}, \mathrm{H}-2$), 5.51 (m, 2H, H-9, H-10), 5.47 (dt, 1H, J = 17.0, $1.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{la}$), 5.25 (dt, J = 10.1, 1.2 Hz, H-1b), 5.19 (d, $1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-8), 4.92(\mathrm{br} \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{H}-3), 2.10(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-11), 1.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12), 1.30(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-13 \rightarrow \mathrm{H}-16)$, $0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-17) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 135.8 (C-2), 134.6 (C-10), 127.7 (C-9), 117.3 (C-1), 79.9 (C-4), 78.3 (C-7), 70.3 (C-5), 68.7 (C-6), 63.5 (C-3), 58.6 (C-8), 31.8 (C-11), 29.3 (C-12), 29.2 (C-13), 29.1 (C-14), 27.7 (C-15), 22.6 (C-16), 14.1 (C-17); EIMS m/z 259 [${ }^{+}-1$], 215, 157, 129 (100), 91, 77, 55, 43; HREIMS m/z 259.1697 (calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}$, 259.1699).

References and Notes

(1) (a) Bohlmann, F.; Burkhardt, F.; Zdero, C. Naturally Occurring Acetylenes; Academic Press: London, 1973. (b) Hansen, L.; Boll, P M. Phytochemistry 1986, 25, 285-293.
(2) Muir, A. D.; Cole, A. L. J.; Walker, J. R. L. Planta Med. 1982, 44, 129-133.
(3) Matsuura, H.; Saxena, G.; Farmer, S. W.; Hancock, R. E. W.;Towers, G. H. N. Planta Med. 1996, 62, 256-259.
(4) Furumi, K.; Fujioka, T.; Fujii, H.; Okabe, H.; Nakano, Y.; Matsunaga, H.; Katano, M.; Mori, M.; Mihashi, K. Bioorg. Med. Chem. Lett. 1998, 8, 93-96.
(5) Bohlmann, F.; Niedballa, U.; Rode, K. M. Chem. Ber. 1966, 99, 35523558.
(6) Bentley, R. K.; Bhattacharjee, D.; J ones, E.; Thaller, V. J . Chem. Soc. C 1969, 685-688.
(7) Lemmich, E. Phytochemistry 1981, 20, 1419-1420.
(8) Chodkiczwicz, W. Ann. Chim. Paris 1957, 2, 819-869.
(9) (a) Feit, P. W. J. Med. Chem. 1964, 7, 14-17. (b) Murrer, B.; Brown, J. M.; Chaloner, P. A.; Nichiloson, P. N.; Parker, D. Synthesis 1979, 350-352.
(10) Horitak, K.; Yoshioka T.; Tanaka, T.; Oikawa, Y.; Yonemitsuo, O. Tetrahedron 1986, 42, 3021-3028.
(11) Lee, J. B.; Downie, I. M. Tetrahedron 1967, 23, 359-363.
(12) Yadav, J. S.; Chander, M. C.; Rao Sirnivas, C. Tetrahedron Lett. 1989, 30, 5455-5458.
(13) H ofmeister, H.; Annen, K.; Laurent, H.; Wiechert, R. Angew. Chem., Int. Ed. Engl. 1984, 23, 727-729.
(14) Lu, W.; Zheng, G. R.; Cai, J . C. Synlett 1998, 737-738.

NP980418Z

[^0]: * To whom correspondence should be addressed. Tel: 86-21-64311833. Fax: 86-21-64370269. E-mail: jccai@server.shcnc.ac.cn.

